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SUMMARY 
This paper describes a numerical method for the study of combined natural convection and radiation in a 
rectangular, two-dimensional cavity containing a non-participating (i.e. transparent) fluid. 

One wall of the cavity is isothermal, being heated either by solar radiation or independently. The opposite 
wall is partially transparent, permitting radiation exchanges between the cavity and its surroundings and/or 
the Sun; that wall also exchanges heat by convection from its external surface to the surroundings. The other 
two walls are adiabatic: convection and radiation there are balanced, so that there is no heat transfer 
through those walls. 

The equations of motion and energy are solved by finite difference methods. Coupled to these equations 
are the radiative flux boundary conditions which are used to determine the temperature distribution along 
the non-isothermal walls. A two-band radiation model has been employed. 

Results are presented for a square cavity with a vertical hot wall at 15O"C, the ambient at 20°C and 
lo4 I Ra _< 3 x LO5, in the absence of direct insolation. The effects on the flow and heat transfer in the cavity 
of radiation and external convection have been examined. More extensive results will be presented in 
subsequent papers. 
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INTRODUCTION 

Because of its many engineering applications, natural convection in enclosures has been the topic 
of much research, particularly in the last two decades. Comprehensive reviews by Ostrach', and 
Catton3 give an account of nearly half a century of work. The importance of flow structure and 
heat transfer processes in double-pane windows, solar collectors, double-wall insulation, nuclear 
reactor insulation, ovens and rooms has been the stimulus for much research in the area. 

Buoyancy-driven natural convection in differentially heated upright cavities with adiabatic 
ends has become the classical research problem which has been extensively studied experi- 
mentally, analytically and numerically in order to gain a better understanding of the governing 
processes. Experimental research has produced many correlations for heat transfer and some 
information about the flow field through visualization techniques. The investigations by Arnold 
et ~ l . , ~  Hollands et ul.,' Randall et ~ 1 . ~  and ElSherbiny et d7 are typical and important examples. 
Elder,s Vest and A r p a ~ i , ~  Hart," Morrison and Tran," Seki et a1.I' and SchinkelI3 described 
further details of the flow revealed by visualization. 

A large number of numerical studies of the problem have also been reported. The submission of 
some 37 contributions to a comparison e ~ e r c i s e ' ~  gives an indication of the amount of interest in 
the numerical study of this problem. 
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The problem has usually been simplified to a study of cavities which have isothermal hot and 
cold boundaries. This has resulted partly from experimental difficulties associated with more 
complex boundary conditions, and partly because understanding of the internal convective 
processes has been the main goal of the research. In fact this has been done to such an extent that 
more realistic boundary conditions have been almost forgotten. However, many real physical 
situations, such as solar collectors and double-glazed windows, do not conform to such simple 
models. It follows that other types of boundary conditions need to be considered. To this end a 
numerical model in which different types of boundary conditions can be implemented is more 
versatile and may therefore be more attractive than laboratory or field experiments. 

Since the main focus of most studies has been on buoyancy-driven natural convection in the 
cavity, the other modes of heat transfer and other interaction with the internal convection have 
usually not been considered. Because of engineering interest in natural convective flows which are 
affected by radiation heat transfer from high-temperature sources--e.g. fires in rooms or 
combustion processes-there have been some studies of such situations, for example by Larson 
and Viskanta,” Larsen,16 Lloyd et aE.” and Chang et Lauriatlg has considered convection 
in an insulated enclosure, including the effects of long-wave radiation. However, in none of these 
studies have the authors considered all of the factors which we have included, namely both short- 
and long-wave radiation, two-dimensional natural convection, the calculation of local radiation 
view factors and, with solar collector applications in mind, with one transparent boundary. 

In a natural convective process the radiative heat transfer may affect the temperature field- 
and hence the flow field-directly through absorption and emission processes within the fluid. 
This effect may be negligibly small, for example if the fluid is dry (or fairly dry) air. Radiation may 
also have an effect on the temperature field indirectly through an impact upon the temperature 
distribution on the solid boundaries. In a solar collector or double-pane window, radiation is 
transmitted and absorbed by the boundaries and may influence the convective flow patterns. 
Also, emission of radiation by the boundaries as well as radiative interaction between them have 
an important bearing on the boundary temperatures, although here-unlike in combustive 
processes-the temperature is not regarded as radiatively high. Because of the inherent coupling 
in natural convection between the thermal and flow fields through the buoyancy effects, the 
temperature changes on the boundaries caused by the radiative heat transfer can have a stronger 
consequence than might be expected. 

A numerical model of a two-dimensional vertical or inclined rectangular cavity, filled with a 
radiatively non-participating fluid, with internal and external radiative heat exchanges, external 
convection and radiation from an external source has been developed and is described here. The 
cold boundary is taken to be a transparent ‘window’ whose temperature is determined from a 
heat balance with all modes of heat transfer properly taken into account. The computer program 
is so structured that all the radiative transfer computation routines can be bypassed so that the 
effect of neglecting radiation can be determined. Also., for comparison purposes, isothermal hot 
and cold boundary conditions with no radiative effects can be simulated with the same program. 

The main purpose of this paper is to describe the methodology adopted. To illustrate the use of 
the program, some results are presented for a square cavity with convection on the outside of the 
cold boundary and also with no convective heat transfer there (as would occur, for example, if the 
cavity were in outer space or if external natural convection could be regarded as negligible). It is 
shown that even at the moderate temperatures considered here, the radiative mode of heat 
transfer is important and that the neglect of this mode of energy transfer and of external 
convection alters the flow and thermal fields and leads to significant differences in the heat 
transfer . 
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ANALYSIS 

Physical model and assumptions 

The rectangular, air-filled enclosure shown in Figure 1 has its third dimension (not shown in 
this figure) horizontal, normal to the plane of the paper, and much longer than the other 
dimensions, so that a two-dimensional flow is assumed to exist. All the walls are stationary and 
impermeable; no-slip conditions exist at them. The left face of the cavity-the hot wall-is an 
isothermal hot surface opaque to radiation; the right face-the cold wall-is imperfectly trans- 
parent (i.e. some absorption of radiation may occur) with convection and conduction energy 
exchanges with the surroundings occurring on its outside surface. The upper and lower walls are 
adiabatic and opaque to radiation. 

It is assumed that the confined fluid is Newtonian and that the Boussinesq approximation is 
valid: the fluid is incompressible with constant properties except for the linear variation of density 
with temperature in the buoyancy term of the momentum equation. All surfaces are taken to be 
grey diffuse reflectors and emitters of radiation and the confined air is assumed to be radiatively 
non-participating (which implies that its water vapour content is low). 

The two-dimensional assumption really the applicability of the model to angles of inclination of 
the cavity less than about 30” from the vertical.’’ At greater angles, experimental studies have 
shown that longitudinal rolls-i.e. rolls with their axes aligned up the slope-may form. However, 
these rolls, related to the three-dimensional instabilities which occur in Rayleigh-Benard 
convection, are weak in comparison with the main circulation and contribute relatively little to the 
overall heat transfer until the cavity is nearly horizontal. 

The radiation calculations have been made using a two-band model: short- and long-wave. 
This implies that emission from the surfaces of the cavity is ‘long’-wave radiation and that 
radiative flux of solar origin is ‘short’-wave. The model is adequate to allow the separate effects of 
(external) solar and (local) low-temperature radiation to be incorporated without imposing an 
excessive computational burden. It also permits the surfaces to have different radiative properties 

(DIFFUSE) 

LONG WAVE / RADIATION EXC. 

COLO PLATE 
[GLASS) 

Figure 1.  Physical model and the co-ordinate system 
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in each band. The treatment of the spectral nature of radiation and spectral integration are 
readily performed without serious loss of the details of the radiative energy transfers. The cold 
wall is considered to be sufficiently thin to allow the temperature difference across it due to 
conduction to be considered negligible, but thick enough to permit a fraction of the incident 
radiation to be absorbed. 

Mathematical model 

The equations governing the motion of the fluid in the cavity are those describing the 
conservation of mass, momentum and energy. The st reamfunction-vorticity formulation (e.g. 
Reference 21) is used; the continuity equation is thereby automatically satisfied and the pressure 
eliminated as a solution variable. 

It is usual to express the equations in non-dimensional form. However, since radiation is a 
function of the fourth power of absolute temperature, the temperature boundary conditions 
cannot be made non-dimensional in the usual manner which involves a temperature difjrence. 
Dimensional values of temperature must be used in the calculation of the radiative fluxes on the 
boundaries. Accordingly our results have not been generalized and actual temperatures are 
specified for each problem. (We could, alternatively, use a reference temperature, rather than a 
reference temperature difference, in the non-dimensionalization process. This, however, affects the 
definition of Rayleigh number and we have preferred to retain the conventional definition.) 

Further, the only prescribed temperatures are those of the hot wall, the ambient and the 
background radiation exchange temperature. The Rayleigh (or Grashof) number is normally 
defined on the temperature difference between the hot and cold walls, which is here not known a 
priori; Ra is thus defined in terms of the temperature difference between the hot wall and the 
ambient air. An effective cavity Rayleigh number can be defined and calculated a posteriori. 

The governing equations in dimensionless form are 

ae ae ae 
- + u - + u - = v 2 e  
at ax a y  

0 = c + V2$, (3) 
in which dimensionless variables are defined in accordance with 

x = xr/LY, Y = Y'ID', U = U ' D ' / K ,  

u =u'D'/u, $ = * I / &  i = r D t 2 / ~ ,  

Pr is the Prandtl number, v / K ,  and Ra is the Rayleigh number, g/?( T h - T g) D3/ icv .  The velocities 
u and u are related to the streamfunction by 

0 = ( T ' - & [ T k + T : J ) / ( T ; - T g ) ,  t = t ' K / D f 2 .  

= a*/ay, u = - a$/ax. (4) 

(5 )  
in which L = L / D '  is the aspect ratio of the cavity (see Figure 1). Because the tangential velocity 

Since the cavity is a closed surface, the boundary is a streamline and 

$(O, Y) = *(I Y) = w, 0) = bw, 1) = 0, 
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on each surface is zero, 

&/ax(o, Y) = a $ / W L ,  Y )  = J $ / ~ Y ( x ,  0) = d+/dy(x, 1) = 0, ( 6 )  
The temperature of the hot wall is O(x, 0) = 0.5. 

The problem is overdetermined for the streamfunction equation (3), there are no boundary 
conditions for the vorticity transport equation (1) and there is (so far) only one boundary 
condition on the energy equation (2). 

As described below, boundary values of the vorticity may be determined from equation (3), 
which at the boundary reduces to 

and from equation ( 6 ) .  
The temperatutre boundary conditions on the cold wall and the end walls are derived from 

energy balances. It should be noted that whilst there is no energy transfer through the end walls, 
there are energy exchanges there with both the other boundaries and with the fluid, so that the 
normal temperature gradient in the fluid adjacent to an adiabatic boundary is not zero. Each 
boundary will be treated in turn. 

r,  = - (a$2/an2),, (7) 

The energy balance at each point on the cold wall may be written 

Here and below, k is the coefficient of thermal conductivity, h is the convective heat transfer 
coefficient from the cold wall to the surroundings, CY, p and E are the absorptivity, reflectivity and 
emissivity respectively, q’ is the radiative flux, the subscripts c, e, i, 0, 1 and s refer to the cold wall, 
emitted radiation, the inside and outside of the surface, and long- and short-wave incident 
radiation respectively, and 

46 = &aTf4. (9) 
We have included the effects of long-wave radiation emitted from the surroundings at  an 

effective black body temperature T, and incident on the exterior of the hot wall, so that 

qbl = 0TL4. (10) 

A similar energy balance on the upper and lower ends yields 

at both x’ = 0 and x’ = L. 
Once the radiative fluxes have been determined, the temperatures of the boundaries can be 

calculated from equations (8)-( 1 1) which couple the internal radiation and convection heat 
transfers on the end walls and which relate the internal convection and radiation heat transfers 
with the external convection and radiation energy transfers on the outside of the cold wall. 

Radiative transfer equations 

ation factors between any pair of these elements must be determined. 

surface m (m = 1, 2, 3, 4) can be written22 

The finite difference mesh defines a set of elements on the boundaries. The radiation configur- 

The long-wave radiative heat flux, denoted by the subscript 1, at any point z, on the cavity 
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in which J;(z , )  is the radiosity: 
n r  

where K (z , ,  z j )  is the configuration factor (which includes the radiation properties of surface 
segment j ) .  T’(z , )  denotes the temperature of the mth segment, calculated as the average of the 
temperatures at each end of the segment. 

If the upper and lower ends of the cavity are divided into N segments each, the cold wall is 
divided into M segments and the isothermal hot wall is treated as a single segment, the radiosity 
equations can be rewritten 

M + 2 N + l  

k =  1 
k# j 

J ; ,  = E ~ ~ G T ~ ~  + pjl J ; F j k ,  

in which Fjk is the view factor between segments j and k .  For a cavity bounded by plane surfaces, 
the view factor between any two points on the same surface is zero; this substantially reduces the 
number of terms on the right-hand side of equation (14). Furthermore, since a two-band radiation 
model is assumed and all the emitted radiation is in the long-wave band, the short-wave 
component of radiosity, J : ,  depends only on the geometry and the insolation. It is assumed that 
the direct insolation is normal to the hot and cold walls of the cavity; the hot wall short-wave 
radiosity is therefore 

and at the ends it is 
M + 2 N + 1  

k =  1 
k2j 

J ; s  = P j s  1 J ; s F k j .  

It follows from equations ( 1 5 )  and (16) that the short,-wave radiosities need only be calculated 
once for a given geometry. The long-wave component A;,, however, needs to be evaluated at each 
stage of the calculation so that the radiosity 

( 1  7) 
The view factor between segments on any two walls can readily be shown to be given by one of 

J’. = J‘. + J’. 
J 1 s  J I ‘  

the following four expressions: 

2 1/2 2 112 1 
2L F h j = - { ( C l + ( L - X j - 1 / 2 )  ] -[I  + ( L - x j + 1 / 2 )  ] +(l+xj2+1/2)1/2-(1-xXf_1/2)1’2) 

(18) 
for the view factor between the isothermal hot wall and a segment j on the cold wall; 

2 1 /2  1 
2Ay F .  =-{[  x:- 1/2 + (1 - Y j -  1/2)21112 - CX:- 112 + (1 - Y j +  1 / 2 )  I 

- Cx?+ 112 + (1 Yj-  1/21 I } (19) 2 1 / 2  2 112 + C X ? +  1/2  + (1 - Y j +  1 / 2 )  I 
for the view factor between a segment j on the upper (or lower) end and a segment k on the cold 
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window; 

(20) 
for the view factor between a segment j on one end wall and a segment k on the other end; and 

+[L2+(yj-1/2-yk+1/2)211/2-[L2 +(yj-1/2-yk-1/2) 2 1 1/2 } 

for the view factor between a segment j on the upper (or lower) end and the hot wall. 

from the radiosity by 
The incident radiative heat transfers 41, and qIs in equations (8) and (1 1) can then be calculated 

411 = ( J ;  - g:) /P, ,  4 1 s  = J : / P s .  

The outside incident short-wave radiation qbs is externally imposed (from the Sun) and the 
incident long-wave radiation qb, is calculated from the externally imposed radiation temperature. 

SOLUTION OF THE EQUATIONS 

The derivatives in the differential equations (l), (2) and (3) are approximated by central space 
differences and forward time differences. Since only the steady state solution is of interest, 
advantage is taken of the fast convergence rate of the false transient technique.21 In this method a 
(false) time-dependent term all//& is added to the left-hand side of equation (3), and the time 
derivatives in each of equations (1)-(3) are multiplied by false transient factors which effectively 
allow the rates of changes of the three solution variables (, 6 and ll/ to be independently 
controlled. These changes mean that the transient solution is incorrect but the steady solution to 
the false equations is the same as the solution to the true equations. The point of the changes is 
that they enable the inherent instability introduced by the FTCS scheme to be postponed to 
higher parameter values. 

The resultant finite difference approximations (FDAs) are discretized with the 
Samarskii-Andreyev AD1 scheme.23 

The boundary values of the vorticity were calculated from Woods’ second-order approxima- 
tionZ4 of equation (7) which is 

in which subscripts 1 and 2 refer to the boundary and the first mesh point in from the boundary; 
An is the mesh interval normal to the surface. The boundary conditions on the streamfunction are 
given by equation ( 5 )  and on the temperature by equations (8), (10) and ( 1  3). The derivatives of the 
temperature at the walls were approximated by three-point (second-order) backward or forward 
differences. 

The solution is marched in time to steady state in the following order. 

(a) From the boundary temperatures at the ith time step calculate the long-wave radiosities. 
(b) Calculate the normal temperature gradients on the upper and lower walls and the cold wall 

(c) Solve the FDA of the false transient form of equation (3) by AD1 to obtain the internal 
from equations (1 1)  and (8). 

temperature. 
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(d) Update the boundary value of the vorticity and solve the FDA of the false transient form of 

(e) Solve the false transient form of equation (2) to obtain the streamfunction. 
(f)  Compute the velocity field from the FDA of equation (4). 
(g) Check whether the solution has converged (i.e. steady state reached); if not, return to (a). 

Convergence to a steady solution, defined by obtaining an average, over all mesh points, of the 
relative changes in II/, [ and Q of less than was reached in a few hundred time steps 
(depending on the parameter values), requiring of the order of 2 min per 100 iterations on a VAX 
111785. 

equation (1) to obtain the vorticity. 

RESULTS 

In the square cavity for which results are presented in this paper, various mesh sizes were tested to 
determine an adequate mesh for an accurate solution. A 41 x 41 mesh was found to be 
satisfactory in terms of both accuracy and computing economy for Rayleigh numbers up to 
3 x lo5. This is in very good agreement with the results of de Vahl Davisz5 who found that a 
41 x 41 mesh yields solutions to pure natural convection in a square cavity with errors in 
Nusselt number less than 1 %  for Ra I lo6. 

The radiative properties, the external radiative sources, the external coefficient of convective 
heat transfer, the hot wall and ambient temperatures as well as the size and shape of the cavity all 
affect the thermal and flow fields inside the cavity. The results in this paper are limited to a square 
cavity containing air (Pr = 0.7) with a hot wall temperature of 150 "C, an ambient temperature of 
20°C, an external convective heat transfer coefficient of 10 W m-2  'C-l, which no sources of 
short-wave radiation (i.e. no direct sunlight) and with the surroundings at an effective black body 
temperature of 20 "C. All the surfaces were assumed to have an emissivity of 0.9 and the cold wall 
was assumed to be made of glass with the same internal and external radiation properties, namely 
a transmissivity of 0.05. The cavity size was varied so that lo4 I Ra I 3 x lo5. The external 
convection heat transfer coefficient used is appropriate to mild forced convection. The range of 
Rayleigh numbers was chosen because it is pertinent to solar collectors or oven windows 
(although the cavity geometry is not). 

The emphasis in this paper is placed on the effects of long-wave radiation and external 
convection (R and EC) on the internal temperature distribution, the flow field and the heat 
transfer. Since the problem of a cavity with isothermal hot and cold walls and no radiation 
(henceforth called the 'standard' problem) has received much attention, the R and EC results will 
be compared with this standard problem. To compute the standard problem, the cold wall 
temperature was set equal to the average temperature of the cold wall in the respective R and EC 
problem. 

To further illustrate the influence of external radiation and convection, as well of internal 
radiation, results are presented with either the external convective heat transfer coefficient set to 
zero or with the radiative effects removed. 

A summary of the different calculations which were performed is given in Table I. A superscript 
asterisk on the run number denotes the 'standard' problem for which the cold surface, as well as 
the hot, is isothermal. The symbols R, EC and REC are used to indicate whether the effects of 
radiation, external convection or both have been included in the 'non-standard' problem. The 
numerical suffix to these symbols indicates the overall Rayleigh number. 

As indicated above, the value of Ra* (the cavity Rayleigh number for the standard problem) 
was computed using, for T ; ,  the mean value of the cold wall temperature computed in the 
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Table I. Summary of results 

Run Ra Ra* T, ("C) I * lmax 

REC-10 
REC-10* 
EC-10 
EC-10* 
R-10 
R- 1 O* 
REC-100 
REC-100* 
EC-100 
EC-100* 
R-100 
RC-100* 
REC-200 
REC-200* 
EC-200 
EC-200* 
R-200 
R-200* 
REC-300 
REC-300* 
EC-300 
EC-300* 
R-300 
R-300* 

10 000 

10000 

10 000 

100 000 

100000 

100 000 

200 000 

200 000 

200 000 

300 000 

300 000 

300 000 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

5 800 
5 800 
6 700 
6 700 
3 800 
3 800 

59 000 
59 000 
67 000 
67 000 
39 000 
39 000 

119 000 
119000 
135 000 
135000 
79 000 
79 000 

178 000 
178 000 
203 000 
203 000 
119000 
119 000 

74.8 4.199 
74.8 3.92 1 
63.4 4.05 1 
63.4 4.2 15 

100.2 3.313 
100.2 3.103 
73.3 9.893 
73.3 8.372 
62.5 8.304 
62.5 8.640 
99.0 9.158 
99.0 7.55 1 
72.9 11.74 
72.9 10.07 
62.3 9.928 
62.3 10.43 
98.6 10.75 
98.6 9.076 
72.7 13.04 
72.7 11.17 
62.2 10.93 
62.2 1154 
98.5 11.93 
98.5 10.07 

R: radiation included. 
E C  external convection included (h  = 10 W m-20C-1).  
REC: both radiation and external convection included. 
* 'Standard' problem with isothermal vertical boundaries. 

corresponding non-standard problem; this differs from the Rayleigh number used in the R and 
EC problem, as defined in equation (l), and cannot be determined a priori. Once an average cold 
wall temperature has been determined from a converged R and EC solution, the standard 
problem can be attempted and a comparison made. 

Low Rayleigh number 

The streamlines for runs REC-10, EC-10 and R-10 (in which Ra = 10000) and for the 
corresponding isothermal cases are presented in Figure 2. In all figures, the hot wall is on the left 
and the fluid is circulating in a clockwise direction. Although at first sight it may appear that the 
general shape of the streamlines for all these runs is the same, a close examination indicates that 
there are significant differences. The streamlines for runs REC-10, EC-10 and R-10, unlike the 
corresponding standard runs, are not skew-symmetrical about the midpoint of the cavity. 
However, the departure from symmetry is small, so that the type of flow-but not the rate of 
circulation-is almost independent of the boundary condition. This can be explained by the fact 
that the shape of the isotherms, shown in Figure 3, indicates what is primarily a conduction 
regime in which the flow field is not greatly affected by the boundary condition. 

The isotherms in Figure 3 show actual temperatures, rather than dimensionless temperatures, 
in oder to make comparisons possible. The lack of skew-symmetry is evident in the isotherms for 
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(REC 10) 
(-4.1,-3,-2,-1,-0.5) 

-- 
( REC 10' ) 

i-3.8,-3,-2,-1,-0.5) 

(Rlfl) 
(-3.2,-3,-2,-1,-0.5) 

(EClO) 
(-4.-3,-2.-1.-0.51 

(EC10.1 
i-4,-3,-2,-1,-0.5) 

Figure 2. Streamlines for the runs REC-10, EC-10 and R-10, and for the corresponding standard runs (see Table I) 

( RECl 0) (ECIO) 
140-70 IlO'O 140-100 118~) 140-70 (10'0 

140-80 c 1 d o  (REC 10' ) 140-70 l lO*Cl  (EC10.J @ 140-110 (10.C) (R10.J 

Figure 3. Isotherms for the flow fields shown in Figure 2 

runs REC-10, EC-10 and R-10. Further, the shape of the isotherms for these runs is markedly 
different (in particular, runs REC- 10 and R-10) from those of the corresponding isothermal 
solutions. Although the shape of the isotherms might appear similar for solutions EC-10 and 
EC-10*, in run EC-10 the isotherm closest to the cold wall intersects that boundary. This is 
consistent with the fact that the cold wall temperature is not uniform. The isotherms in the other 
two solutions (R-10 and R-10* series) indicates a similar trend. Further, the isotherms in solutions 
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REC-10 and R-10 are not normal to the adiabatic upper and lower end walls. This is because 
radiative energy exchanges there with the other surfaces are balanced by conduction into thejluid. 
There is no conduction into or through the end walls which are, in that sense, adiabatic. 

High Rayleigh number 

The streamlines for the solutions with Ra = 300000 (runs REC-300, EC-300 and R-100) and 
for the corresponding standard problems are presented in Figure 4. At this Rayleigh number the 
flow pattern inside the cavity of the R and EC problem is substantially different from that in the 
standard case, and the loss of skew-symmetry is apparent. 

In run REC-300 the location of the cells is almost symmetrical, but at the centre of the left-hand 
cell t+b = - 13.04 whereas at the right-hand cell centre t+b = - 12.74. The streamfunction values at 
the two cell centres for run REC-300* are equal to - 11.17. Although the effective cavity Rayleigh 
number for run REC-300* is the same as that for run REC-300, radiative effects and external 
convection cause the two cells to move slightly further apart in case REC-300 than in the 
standard problem. In run EC-300, in which external radiation has been omitted so that the cold 
wall loses heat to the surroundings only by convection, the cell centres are at (0.4,0225) and (0.55, 
0.775) whereas in the case of the the equivalent standard problem they are located at (0.375,0.225) 
and (0.625,0775). This indicates that external convection has the opposite effect to radiative heat 
fluxes. Note that the neglect of radiation causes the cell centres to be close to the horizontal 
centreline of the cavity with a sharper bending of the streamlines in the inner core (compare 
streamlines for run REC-300 and EC-300). The cavity flow for Ra = 300000 is in the boundary 
layer regime and, unlike the conduction regime flows of Figure 2, it is strongly affected by the type 
of boundary condition. 

The isotherms corresponding to the flow fields of Figure 4 are shown in Figure 5. Again, there is 
a considerable difference between the thermal field of runs REC-300, EC-300 and R-300 and the 
equivalent standard problem solutions. This difference is more marked in cases where radiation is 

(H5OP) 
1-10,-8,-6,-4,-2,-1) (REC3OO') (EC300.1 

(-11.-10.5,-10,-9.-7.-5,-3,-1) (-11,-9,-7,-5.-3.-1) 

Figure 4. Streamlines for the runs REC-300, EC-300 and R-300, and for the corresponding standard runs (see Table I) 
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included in the calculations (indicated by a non-zero gradient at the upper and lower ends). The 
loss of skew-symmetry is also observed. The sharp bending of the isotherms (in the case of runs 
REC-300 and R-300) near the upperand lower ends (especially in the middle section of these walls) 
suggests that the fluid is being heated by the lower 'adiabatic' end and cooled by the upper 
'adiabatic' end respectively. This heating and cooling effect leads to a stronger convective flow. 

This effect can also be seen in the distribution of horizontal velocity along the vertical 
centreline (i.e. V E X ,  0.51) of Figure 6. The dimensionless velocities for runs REC-300 and 
REC-300* have been plotted on the same graph to make comparison easier. The velocity near the 
end walls for run REC-300 is higher than for run REC-.300*, although both cases have the same 
effective cavity Rayleigh number. The boundary layers on these walls are more distinct in run 
REC-300, indicating a stronger convective flow. Unlike the horizontal velocity profile in the 

(REC3OO) (EC300) (R300) 
140-60 (IO'C) 140-100 (IO'C] 14C-70 (1O'C) 

(REC300') (EC300.) (R300') 
140-90 (lO'C1 140-70 ( lO 'C1  140-100 ClO'Cl 

Figure 5. Isotherms for the flow fields shown in Figure 4 

X 
Figure 6.  Horizontal velocity distribution along the vertical centreline for runs REC-300 and REC-300. 
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standard case, there is a pronounced stagnant core region in the solution with radiative transfer 
(run REC-300). The distributions of vertical velocity along the horizontal centreline (i.e. u [05, y]) 
for these two solutions are nearly the same and have not been presented here. 

To demonstrate the effects of radiative transfer and external convection on the horizontal 
velocity, a plot for runs REC-300, EC-300 and R-300 is given in Figure 7. It is evident that the 
profiles for runs REC-300 and R-300, in both of which radiation is included, are very similar. 
Interestingly enough, in the cse of run EC-300 in which radiation has not been included this 
velocity distribution is nearly the same as the standard case in Figure 6. Therefore the radiative 
transfer is the determining factor in the horizontal velocity distribution inside the cavity. Again, 
since the vertical velocity profiles for these three cases were not significantly different from each 
other, they are not shown here. 

As mentioned earlier, the glass window (cold wall) is not isothermal so that its temperature is 
not uniform. The temperature distribution on this boundary is determined by the internal and 
external radiative exchanges as well as internal and external convection. Two typical cold wall 
temperature distributions are plotted in Figure 8 for Rayleigh numbers of lo4 (run REC-10) and 
3 x lo5 (run REC-300). In both of these runs the radiative transfer was taken into account and the 
external convective heat transfer coefficient was 10 W m-' "C- '. There are temperature reversals 
near both the top and bottom of this wall. This is because of the radiative heating of the end 

0.2 0 . 4  0.6 0 . 8  1.0 

X 

Figure 7. Horizontal velocity distribution along the vertical centreline for runs REC-300, EC-300 and R-300 

Figure 8. 

N ,  , I 1 1 0 
D 0 .2  0.9 0.6 0 .  B & 

X 

Temperature distribution along the cold wall for runs REC-10 and REC-300 
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sections of the cold wall by the adjacent upper or lower ends. The Rayleigh numbers for these two 
solutions are substantially different but the two temperature profiles are quite similar, especially 
away from the lower end. In fact the average temperature of the cold wall in run REC-10 is only 
2.1 "C higher than that in case REC-300, suggesting that the cold wall temperature is not very 
greatly affected by the internal convective flow. 

intermediate Rayleigh number 

The upper and lower end temperature distributions for the runs REC-200, EC-200 and R-200 
(Ra = 2 x lo5) are shown in Figures 9(a) and 9(b) respectively. Whilst the removal of radiative 
effects results in a higher temperature for the upper end-compare the profiles for runs REC-200 
and EC-200 in Figure 9(a)-the opposite occurs at the lower end-see Figure 9(b). From a stand- 
point of the end temperature prediction, the radiative effects result in a cooling of the top and a 
heating of the bottom. If the radiation is not included, the upper and lower end temperatures will 
be greatly overpredicted and underpredicted respectively. Furthermore, the external convective 
heat transfer has a determining effect on these temperatures (see Figures 9(a) and 9(b), curves 
(REC-200) and (R-200)). For the run R-200 (h=0) the upper end temperature is consistently 
higher than that of run REC-200 ( h =  10 Wm-'"C-'). An opposite trend is seen for the 

Figure 9. 
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Temperature distribution along the end walls for runs REC-200, EC-200 and R-200: (a) upper end: 
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lower end-see Figure 9(b). The difference between the predicted end temperature distributions 
for these two cases is more significant at the lower than the upper end. The trend suggests 
that the external convective heat transfer has a cooling effect on the top end and a heating 
effect on the bottom end. 

Strength of convection 

External heat transfer affects the strength of the internal circulation, as measured by the 
maximum value of /$I. For cases involving only external convection, i.e. when external radiative 
effects are not included, the internal circulation is always weaker than in the corresponding 
isothermal case. The difference is small: for instance, it is only 3.9% between runs EC-100 and 
EC-100*. On the other hand, the inclusion of external radiation, with or without external 
convection, results in a stronger circulation than that which occurs in the correponding standard 
cases: for instance, the circulation in case REC-100 is 18.2% stronger than in case REC-100*. This 
indicates that if the cold wall were to be modelled as an isothermal surface at an effective average 
temperature T,, with the radiative effects not properly accounted for, the circulation would be 
underestimated by 18.2% in this particular case. Furthermore, a comparison of runs M and N 
shows that even if the cold wall is not assumed isothermal and the external convective cold 
boundary is modelled properly, neglect of radiation would still lead to underprediction of internal 
circulation by 193% and of the average cold wall temperature by 103 "C (i.e. down from 72.7 "C 
for run REC-300 to 62.2 "C for run EC-300). It is interesting to note that whilst in run REC-300 
(radiation included) the circulation is stronger than run EC-300 (radiation neglected), the effective 
cavity Rayleigh number is srnaiier for run REC-300, indicating that the radiative effects enhance 
the internal circulation in the cavity. 

The external convective heat transfer also has a strong effect on the circulation inside the 
cavity. A comparison between the results of runs REC-300 ( h  = 10 W m-"C-') and R-300 
(h  = 0) shows that the cold wall temperature is 25.8 "C higher in the latter case and the circulation 
is 9.3% lower. 

In summary: external convection weakens the internal circulation; radiation strengthens it; and 
in combination-at least for the parameter values used here-the overall effect is a strengthening 
of the internal circulation. 

Heat j u x  calculation results 

From an engineering and practical viewpoint, the rate of heat transfer across the cavity is a very 
important characteristic of the flow. The local convective heat flux Q(x) in a horizontal direction 
at the hot (or cold) wall is given by 

Q(x)conv = - ( a e / a ~ ) w  3 

which was obtained using a three-point backward formula. The Nusselt number was calculated 
by integrating the local heat flux using Simpson's rule. It is again pointed ou t  that the 
temperature is non-dimensionalized with T f - T:, except in the standard case which is based on 
T6 - T i .  Therefore, for comparison of the Nusselt numbers betweeen each solution and the 
corresponding standard case, the temperature non-dimensionalization must be based on the hot 
wall and the calculated average cold wall temperature T i .  This adjustment yields a Nusselt 
number which is a measure of the convective heat transfer in the cavity. 

For the cases in which radiative transfer is considered, a radiation Nusselt number (averaged 
along the wall) is defined as 

NUrad = (Qrad/Qconv) Nucony3 
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in which Qrad and Q,,,, are the net radiative and convective heat transfer rates from the hot wall. 
The total heat transfer can be determined by a total Nusselt number (Nu,,,) which is the sum of 
the convective and radiative Nusselt numbers. For the sake of clarity, the Nusselt numbers based 
on the ambient temperature are shown with primes. 

The internal convective local heat fluxes for runs REC-300 and REC-300* on the hot and cold 
walls are given in Figures 10(a) and 10(b) respectively. 'The Nusselt number in this figure is based 
on Tg - T i .  For both cases the effective cavity Rayleigh number (Ra*) is the same (178000). In 
the standard case (run REC-300*) the hot and cold wall Nusselt numbers are skew-symmetrical, 
as expected from a Boussinesq fluid and isothermal hot and cold side walls. There is no such 
symmetry in the case of solution REC-300. It is seen that an isothermal cold wall assumption 
results in an overprediction of local heat flux in the upper half of the cold wall and an 
underprediction in the lower half (Figure 10(b)); on the other hand, there is an opposite trend near 
the top and in the bottom half of the hot wall (Figure lQ(a)). Thus if the local convective heat flux 
is of interest, the solutions based on the standard problem yield erroneous rates of heat transfer 
on the cold as well as the hot wall. The local hot wall convective heat flux for run REC-300 
together with those for cases EC-300 and R-300 (Ra == 3 x f05) are plotted in Figure 11. In this 
figure the Nusselt number is based on T6 - TH. It is seen that except in the region near the top of 
the hot wall, the convective heat transfer rate from the wall is higher when radiation is neglected 
(compare curves REC-300 and EC-300). This difference near the bottom can be as high as 100%. 

0.2 0.  I 0.6 0 . 8  1.0 

I , 1 I 
0.2 0.  t 0 .L  0.8 1.0 

X 
(b )  

Figure 10. Local convective heat flux for runs REC-300 and REC-300*: (a) hot wall; (b) cold wall 
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The average hot wall Nusselt numbers for different Rayleigh numbers are plotted in Figures 12 
and 13. In these figures the calculations from the runs in which radiation has been considered are 
given. The total Nusselt number (i.e. Nu:,, + Nu:,,,) as well as the standard problem convective 
Nusselt number ( N u * )  are also given for comparison purposes. The same symbol has been used 
for the convective Nusselt number (Nu' )  and the corresponding one obtained from the standard 
solution (Nu*) .  However, as explained earlier, the basis of the non-dimensionalization for the two 
are different. At a Rayleigh number of 2 x lo5 the convective heat transfer from the hot wall 
accounts for only 33% of the total heat flux for h = 10 W m-'"C-' compared with 29% for 
h = 0. This indicates that the radiative heat transfer from the hot wall for the runs shown here is 
the dominant heat transfer mode. It is interesting to note that the lines of the total Nusselt 
number and the standard problem convective Nusselt number are very nearly parallel, so that the 
total Nusselt number could be obtained by multiplying the standard solution convective Nusselt 
number at the same Rayleigh number by a constant. 

I I I I I 

J I I 1 I 
0.2 0 . 4  0.6 0 .8  1.0 

X 
Figure 11. Local heat flux (based on T)h - T : )  along the hot wall for runs REC-300, EC-300 and R-300 
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Figure 12. Average Nusselt number along the hot wall for all runs with external convection (primes denote values based 
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Figure 13. Average Nusselt number along the hot wall for all runs without external convection 
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Figure 14. . Average Nusselt number along the hot wall based on TH - T :  

The average convection Nusselt number based on TL- T i ,  for the runs which include 
radiative effects and external convection ( h  = 10 W OC-'), is plotted in Figure 14. The 
average hot wall Nusselt nupber for the corresponding isothermal case is also given in this figure 
for comparison. The difference between the two calculated Nusselt numbers is the error in the 
predicted convective heat transfer which would have been made if an isothermal cold window 
temperature had been assumed (this temperature is not known a priori). Such an assumption 
leads to an underestimation of the convective heat transfer at low Rayleigh numbers (Ra* < lo4). 
However, a progressively increasing overprediction results at higher Rayleigh numbers. For 
instance, at an effective cavity Rayleigh number of 1.2 x lo5 the isothermal case yields an error of 
12% in the convective heat transfer rate. Of course, the error in the total heat transfer (convection 
and radiation) is much higher if the standard model is used (the difference between these two 
Nusselt numbers is also plotted in Figure 14). This error is about 173% for the range of Rayleigh 
numbers considered here. In other words, for the problem simulated here, if the Nusselt numbers 
are calculated for the standard isothermal case they must be multiplied by 2.73 to yield the total 
heat transfer rate from the hot wall. 
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CONCLUSIONS 

A numerical method for the study of combined natural convection and radiation in a rectangular, 
two-dimensional cavity containing a non-participating (i.e. transparent) fluid has been presented. 
One wall of the cavity was taken to be semitransparent (i.e. its transmissivity is less than unity). 
Expressions for view factors between area elements on the boundaries were derived so that local 
radiosities could be computed and detailed radiation calculations combined with natural 
convection calculations. A consideration of convection from the outside of the semitransparent 
boundary has also been incorporated. 

Results have been presented for a square cavity with a vertical hot wall at 150 "C, an ambient 
temperature of 20°C and lo4 I Ra I 3 x lo5, in the absence of direct insolation. The ways in 
which radiation and/or external convection affect the flow and heat transfer in the cavity have 
been revealed for this particular situation. In general terms it has been shown that external 
convection weakens the internal circulation, radiation strengthens it, and in combination-at 
least for the parameter values used here-the overall effect is a strengthening of the internal 
circulation. 
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APPENDIX: NOMENCLATURE 

D' 
F 
9 
h 
J '  
k 
K 
L 
L 
n 
Pr 

Ra 
t 
T 
u, u 
x, Y 

4' 

Z 

c1 

B 

i 
e 
E 

K 

cavity width 
view factor 
gravitational acceleration 
convective heat transfer coefficient 
radiosity 
thermal conductivity 
configuration factor 
cavity height 
cavity aspect ratio, L I D  
co-ordinate normal to a surface 
Prandtl number, V / K  

heat flux 
Rayleigh number, gB( 7'; - TH) D ' 3 / v ~  
time 
temperature 
x, y velocity components 
co-ordinate directions 
a point on any cavity wall 
absorptivity 
volumetric expansion coefficient 
emissivity 
vorticity 
dimensionless temperature 
thermal diffusivity 
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V kinematic viscosity 
P reflectivity 
Q Stefan-Boltzmann constant 

cavity inclination to the vertical 
stream function 

4 * 
Subscripts 
a ambient 
C cold wall 
e emitted radiation 
h hot wall 
i 
1 long-wave radiation 
0 

S short-wave radiation 
W wall 

inside of the cold wall 

outside of the cold wall 

Primes denote dimensional quantities (for clarity, these have been omitted from the symbols for 
material properties). 
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